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SUMMARY

This is a working paper in which a formulation is given for solving the boundary-layer equations in
general body-fitted curvilinear coordinates while retaining the original Cartesian dependent variables. The
solution procedure does not require that any of the coordinates be orthogonal, and much of the software
developed for many Navier-Stokes schemes can be readily used. A limited number of calculations have
been undertaken to validate the approach.

INTRODUCTION

The boundary-layer approximation is a useful engineering tool which has contributed significantly
to the understanding of viscous flow at high Reynolds number. The boundary-layer equations require the
use of a body conforming coordinate system and the flow Reynolds number must be high. In developing
the usual boundary-layer equations, both the independent variables and the dependent velocity variables
are transformed to the new body conforming coordinates. For body surfaces with little curvature, the
boundary-layer equations cast in terms of the new dependent variables more or less simplify back to a
flat plate or Cartesian-like-form of the equations along a developed surface. However, if the body has
appreciable curvature, the equations become more complicated. They are particularly more complex if a
nonorthogonal coordinate system is used, yet for many applications it is difficult to generate an orthogonal
coordinate system along the body surface.

In this note, a formulation for the boundary-layer equations in terms of the original Cartesian velocity
variables is described for body-fitted general curvilinear coordinates. Although the collaborating compu-
tational experiments that have been undertaken are limited, the proposed alternate form of the governing
equations may offer several advantages in terms of numerical stability by avoiding coordinate sourcj terms.

Moreover, this alternate form of the boundary-layer equations does not require that any of the coordinates
be orthogonal, and software (grids, boundary condition routines, etc.) developed for many Navier-Stokes
schemes can be readily used.

This formulation was partially motivated by discussions with Dr. H. Yoshihara.

BACKGROUND

The compressible boundary-layer equations for the unsteady, three-dimensional flow of a perfect gas
over aflat plate can be written

pt + (pu)_ + (pv)y + (pw)_ = 0 (la)

put + puuz + pvuy + pwuz = -px + (lzuy)u

1

(lb)

. ", , ::'., : ,. : :- : : , , , .... . .: r , ,



pwt + puw= + pvwv + pww= = --p= + (#wt_)y ( I c)

pet + puI-I ,+ pvtI v + pwI-I,

= _ H v+_(u:+ )_ +Pt (ld)
Y

where p and p are the density and pressure, u, v, w are Cartesian velocity components, and H is the specific
total enthalpy, H = _ with e the total energy per unit volume. Here Pr is the effective Prandtl number.p
The equations are nondimensionalized and y is a coordinate normal to the body surface. These equations
can be used for bodies of slight surface curvature using x and z as distances along the surface with u, w,
and v the corresponding velocities.

If surface curvature effects are taken into account, the boundary-layer equations take on a more com-
plex form primarily because of the addition of coordinate source terms (refs. 1 and 2; Warsi, Z. U. A.;

unpublished notes, 1984). For example, if _, r/, and ( are defined as shown in figure 1, with 77normal to
the surface, Panaras (ref. 2) derived the form

( j-l p)_. + ( j-l pU)_ + ( j-l pV)n + ( j-l pW)¢ = 0 (2a)

pUt + pUU_ + pVU n + pWU¢ + KalpU 2 + Ka2pUW + Ka3pW 2 =

Ka4p¢ -- Kasp_ + I_K,,sU, + ttKa9W n

+ JO [ + K.6U + K=TW)]
g22J

(2b)

pWt + pUWf + pVW n + pWW¢ + KblpU 2 + Kb2pUW + Kb3pW 2 =

Kb4 pf -- KbsP¢ + It Kb8 Un + #Kb9 Wn

+ Ja.[ + + KbTW)]
g22 J

(2c)

( J-l e)¢ + [ J-l ( e + p)U]_ + [ J-l ( e + p) V]n + [ J-l ( e + p) W]¢ =

tt ( a 2 )_]
O_[ItKelO_U2 + I_Ke20_(UW) + ltK*30_W2 + Pr('7 - 1)g22J (2d)

where the metrics are given in appendix 1 and U and W are contravariant velocities as defined later. Here
the _?-coordinate must be normal to the body surface.

Although there are more terms than previously, this is a fairly clean form of the boundary-layer equa-
tions. From a numerical point of view, however, equation (2) are more difficult to solve than equation (1)
because derivatives of metrics must be formed which are not always smooth and because the extra source

terms can adversely effect numerical stability. For example, any coordinate source term such as Kal pU 2
in equation (2b) can degrade stability, in this case if K,,1U has a negative value.
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In thefollowing sectionthe stepsto bringtheNavier-Stokesequationsin Cartesiancoordinatesinto
generalcurvilinearcoordinatesandvelocity componentsarebegunasif to deriveequationslike equation
(2). Herethesestepsareonly takento determinehow to grouptheequations.Oncethepressurein the
viscouslayeris determinedfrom theuncouplednormal-likemomentumequation,primitive formsof the
momentumequationsareusedin placeof equations2band2c. Theprimitive forms with givenpressure
anduseof athin-layerapproximationareeasierto treatnumericallythanequation(2).

DEVELOPMENT OF CURVILINEAR BOUNDARY-LAYER EQUATIONS

The three-dimensional Navier-Stokes equations in Cartesian coordinates can be written as

(p)t + (pu),, + (pv)y + (pw)_ = 0 (3a)

put + puu= + pvu u + pwuz + p= = R=mom

pvt + puv= + pvvy + pwvz + Pu = Rvrnora

pwt + puwx + pvwy + pwwz + Pz = Rzraom

(3b)

(3c)

(3d)

pHt+ puHx + pvHy + pwHz - Pt = R.,_. (3 e)

where (Rxmom, Rumor.' Rz,nom) and Rear will represent the viscous terms.

Transforming the independent variables x, y, and z to body conforming coordinates (, r/, and ff gives

( j-l p)r + ( J-l pU)_ + ( j-l pV)_ + ( J-l pW)¢ = 0 (4a)

put + pUu_ + pVu, 1 + pWu¢ + (_'xP,_ + 'r/xPn + _'xP¢) = ]:l,xmom

pvt + pUv_ + pVv n + pWv¢ + (_'vP,_ + r/ypn + __p¢) = P_r,-,ora

pwt + pUw_ + pVw,_ + pWw¢ + (_zP_ + rlzp,_ + _zP¢) = Rzmorn

pHt+ puH_ + pvH, + pwH¢ - pt = R,,_,

where the U, V, and W represent unscaled contravariant velocities; e.g.,

U = 5,u + _yv + _,w

V = rl=u + rl_v + rlzw

W = 5,u + Cyv+ Gw

and J is the transform Jacobian

(4b)

(4c)

(4d)

(4e)

(5a)

(Sb)

(5c)

and other metrics are defined at the end of appendix 1. Note that the Cartesian velocity variables u, v,
and w are still retained as dependent variables and that the momentum equations are still the Cartesian
momentum equations.
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To obtainequationssuchasequation2 usingnew dependentvelocity variablesU, V, and W, the
dependent velocity variables can be transformed by taking linear combinations of the Cartesian momentum

equations. Specifically these equations can be multiplied by the matrix O defined as

O= % % % (6)

where the overbar implies scaling of the metrics such that _ = (=/_/_ + (uz + (z,

rlz/¢_?x z + rig + r/z2 etc. Multiplying the three momentum equations by C gives

p(Jt + pUfJ¢ + pVO_ + pWO¢ + s_ + 7--(. ( 7¢p¢ + Trlp_ + 7¢p¢) = 7--(. ._ (Ta)

pZ + pu% + pv% + pw% + 8, + v--_.(v_p¢+ vnp, + v(p¢) = VT. (7b)

p('Vt + pUlTV_ + pVlTVn + pWff'_ + 8¢ + V(. ( VCp_ + Vrlp,_ + V¢p¢) = V-(_ . ffl (7c)

where/{ R t
= ( =too,,, Rv,no,n, Rzr, ora) and where V is the gradient operator. Terms like V_. V(pi should

be interpreted as ((=fix + (u_v + _¢_)P¢.

The terms s_, s,, and a¢ are coordinate source terms given as

- pw(_od_ + ,,od, + _,od.)
(8a)

8, = - pU(uO_%+ vOffTv+ wO_%)
- pV(uO,% + vO,%+ wO,%)
- pW(uO¢%+ roe%+ woe%)

(8b)

(8c)

The Cartesian velocities in these source terms can be replaced with contravariant velocities using

z_ z n z(

(9)

where the transformation matrix is simply C -1 for C unscaled. Often the source terms are rearranged and
written with Christoffel symbols, but such notation is not needed here.
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In thebodyconformingcoordinates,thewall correspondsto r/= const, so _70 is normal to the wall

and the flow tangency condition requires that V = V"-'-_• _" = 0 where _ = (u, v, w) t. For a thin viscous

layer near the wall, r¢ will be 0(6) (as will the variation of _ and _ metrics with 0, i.e. 0,(x = 0(6) etc.).

For small _¢ the o-momentum, equation 7b, simplifies to

s,_ + V""_. (V_p_ + V0p_ + VCp¢) = V'--'_./_

Since/_ represents viscous stress terms along the wall, the product V'_./_ should be zero at the wall and

small away from the wall. Consequently the q-momentum equation furthers simplifies to

s, + V0. (V_p_ + V0Pn + V_p¢) = 0 (10)

Given outer-edge conditions for p, this represents a simple wave equation with a source that can be used

to evaluate the pressure through the viscous layer. This equation further simplifies if the 0 coordinate is

orthogonal to the surface as V0 • V_ = 0 and V--_. V¢ = 0. Even for nonorthogonal coordinates, the

coefficient V0 • V0 is generally so much larger than the other coefficients that the assumption

P,1 = 0 (11)

is often valid over a thin layer near the wall. Thus from equation (11) p is prescribed throughout the
boundary layer to its specified edge value. Therefore, pressure does not depend on the other dependent
variables within the boundary layer if equation (11) is used, while the dependency is weak if equation (10)
is used.

Once the pressure is determined in the boundary layer from the 0 momentum equation, the pres-
sure derivatives in the Cartesian momentum equations, equations 4b-d can be evaluated. With pressure
specified, the inviscid portion of the Cartesian momentum equations using only transformed independent
variables are very easy to solve for u, v, and w. The inviscid equations with specified pressure are just
simple convection equations. Consequently, assuming the thin-layer viscous terms cause no difficulties,
equations 4b-d can be readily solved for u, v, and w in place of the more complex equations 7a and 7c for

U and W. Taking a linear combination of (u, v, w) t with V_ and V_ (now ignoring metric scaling), the
transformed velocities U and W are then readily formed as

u=v .4'

w= v¢.f

At this point the same linear combination of Cartesian momentum equations is used to predict U and W,
but the Cartesian momentum equations rather than the _ and _ momentum equations are used directly. As
a consequence the complex source terms are avoided.

Up to this point the viscous terms have been mostly ignored in the development. Their complexity
remains to be checked, as well as whether they tend to couple the equations together.

To examine the viscous terms, it is illustrative to first consider incompressible flow. For incompress-
ible flow in which the coefficient of viscosity is constant the viscous terms are given as

t:lxmom = #V2 u ( 12 a)

Ry,nom = #V 2 v ( 12 b)

Rz,nom =/zV2w (12c)

5



Clearlythesetermsdo not couplethemomentumequationstogether.Now theLaplacianoperatortrans-
forms(in divergenceform) as

v2= s[o_J-_(v_•vOo_ +o_J-_(v{,vn)a.+ aj-_(v{,vOo¢

+ o,J-_(vn •vOo_ + o_J-_(v)), w))o_ + o,:-_(v_, vOo_

=l=(9<J-1(v_ •v_)_# 4=oq(j-1(v_ •v.o)oqr/-l-oq(j-1(v_, v_) o(_]

(13)

The extra cross derivative terms caused by coordinate transformation have been encountered in potential
and Navier-Stokes codes and can be differenced so as not to cause numerical instabilities. However, equa-
tion (13) can be further simplified by making a thin-layer approximation in which case these terms can be
eliminated altogether. Dropping all derivatives with respect to _ and _, the Laplacian is reduced to

v 2 = :[ O,J-_(vr). vn) an] (14)

which is particularly simple. Thus for an incompressible viscous term and specified pressure, the momen-
tum equations (4b-d) are uncoupled and are readily solved for u, v, and w.

If the Cartesian form of the compressible viscous terms undergoes independent variable transforma-
tion, (x, 9, z) to (_, ri, O, and if they are subject to a thin-layer approximation, they simplify to

R_mo,n = JOn[ J-l(#ralun + (#/3)m2r/_)] ( 15 a)

Ru_om = J O,_[j-1 ( Izml vn + ( /_/3) rn2 _v) ] ( 15 b)

Rzraora = J On[ j-1 (#ml w, + (#/3) mz r/z)] (15c)

Re,er = JOn{J -1 [ I_ml ra3 + (p/3) m2 ( rlxu + rluv + r/,w) ] } ( 15 d)

2 2_ I_ 2
where m l = fix + fly rl, , rn 2 = rlxun + rluvn + rlzwn, and m3 = [ ( u 2 + v 2 + w 2 )n]/2+ P r -1 (if- 1) -1 ( a2 )n.

and J is again the transformation Jacobian, Here the viscous terms were first put into divergence form, and
then simplified. As a result they are identical to the viscous terms used in many thin-layer Navier-Stokes
codes. This can cause some error for bodies with high curvature as metric terms are also being discarded.
Making the thin-layer approximation on the nonconservative form of the viscous terms eliminates this
problem. This form is given in appendix 2.

The compressible viscous terms are coupled through the mz term, but the coupling appears to be
weak and has been treated explicitly in many numerical schemes without degradation of the time step or
iterative convergence. Moreover, because the coupling occurs in only one direction, rl, it would not be too
costly to account for it in a fully implicit manner.

CURVILINEAR BOUNDARY-LAYER EQUATIONS

In summary, a form of the boundary-layer equations for general curvilinear coordinates is given by
(with rl chosen away from the surface):
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Normal Momentum

and ( Momentum

pn = 0 (11)

put + pUu_ + pVu n + pWu¢ + (_xP_ + rl=pn + (xP¢) = JOn{d -1 [_ml u,/+ (#/3)m2 r/x] } (4 b)

pvt + pUv_ + pVv n + pWv_ + (_vP( + rlvPn + _uP¢) = J(gn{J-l[#mlvn + (IZ/3)mz_?v]} (4c)

pwt + pUw( + pVw n + pWw¢ + ((zPg + rlzpn + GP() = JOn{d -1 [#mlw n + (#/3)m2r/z]}

where two linear combinations of u, v, and w are used

Energy

(4d)

pHt + puH( + pvH n + pwH¢ - Pt = JOn{J -1 [#mira3 + (#/3)m2(rlxU + rlvV + r/zw)] }

where

Constitutive

where

Continuity

2 2
ml = rl2 + rlv + rlz

m2 = _Txu_ + _Tvv_+ _TzW_

m3 = [(u 2 + v 2 + w2)n]/2+ pr-l(q¢- 1)-l(a2),

T (,),- 1) (u 2 + ,02 + w 2)

_-_-= a2 [H- 2 ]

( d-l p)r + ( J-l PU)_ + ( J-l pV)n + ( j-l pW)¢ = 0

7
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Thesix equations,normalmomentum(eq. 11), two linear combinations of (eq. 4b), (4c), and (4d)
to form U and W, energy (eq. 4e), state (eq. 16a), and continuity (4a), can be used to determine the six
variables p, U, W, H, p, and V. The Cartesian velocity components are then obtained from

= Y_ YT Y¢

z_ z T z_

(9)

Generally p is determined from

PT = 0 (11)

and an outer-edge boundary condition so that p = P_@e along 7/coordinates. In more general cases pressure
can be determined from

s T + Vr/. (V_p_ + V_/p T + VCp¢) = 0 (10)

using the same outer-edge condition with the source term defined as

sT = - pU( + vadTv+ wO rT,)

- pV( uOT_lx + vOT_?v + wOT_l_ ) (8b)

- pw(uacrTx+ va¢ v +

In this case pressure will vary throughout the boundary layer.

For ¢ (instead of r/) away from the surface, linear combinations of U and V are used, pc = 0, ml =

¢2z + ¢2y + ¢2, m2 = Cxu¢ + Cyv¢ + Czw¢, m3 = [ (u 2 + v 2 + w2)¢]/2 + pr-l(,,/- 1)-1(a2)o and viscous
derivatives are taken with respect to ¢.

NUMERICAL TESTING

This formulation has been tested in steady state applications using the time-like boundary-layer
scheme reported by Van Dalsem and Steger in (ref. 3). For a prescribed edge pressure, the equations
are solved in the following way with P,7 = 0. Using central differencing in r/and upwind differencing in

and ¢, equations (4b) to (4e) are used to update u, v, and w, and H. As pressure was already obtained
using one linear combination of the momentum equations, only two linear combinations of the momentum

equations can be used to determine the velocities. Thus, U and W are formed from the momentum updated
u, v, and w. The equation of state, (16a), is used to update p, with T defined from equation (16b). The

third linear combination of u, v, and w is obtained by solving continuity for V using already updated U,
W, and p. The final updated form of the Cartesian velocity components are then obtained from updated
U, V, and W using equation (9).

Two test cases were used to verify the algorithm. The first case, flow over a flat plate, was simply
used to verify that the algorithm was coded correctly. To bring in three-dimensional effects and to verify
some of the metric terms, the computational grid was rotated on the flat plate as sketched in figure 2. In this
simple test, a compressible Blasius solution was specified at all boundaries. Figure 3 shows the Blasius
result and a typical computed profile (with Pr = 1) taken from the center of the 20 x 10 x 30 grid for a
grid that was not rotated. Significant relative error is detected for the vertical velocity, but the overall error
is small. Figure 4 shows Cartesian velocity profiles for a similar calculation but with the grid rotated by
30 ° .



A moreinterestingtestcasewasprovidedby usingtheboundary-layeralgorithmto verify acomputed
thin-layerNavier-Stokesresultonaprolatespheroid(ref. 4). In thiscasetheNavier-Stokesresultwasfirst
obtainedfor thebodyat 10oangleof attack,Moo = 0.17, and Re = 7.7 x 10 6 based on the body length.
In the experiment (ref. 5) the boundary layer was tripped at the x/L = 20% station. In the calculation
the trip was somewhat taken into account by using laminar values of the viscosity coefficient over the first
20% portion of the body and using a eddy viscosity turbulence model from that point on. Having obtained
the Navier-Stokes result, the new boundary-layer code was also run on a portion of the Navier-Stokes grid
from x/L = 5% to x/L = 80%. Starting boundary-layer profiles and edge conditions were taken from the
Navier-Stokes calculation, the "edge" corresponding to the 25 th grid point up from the wall of the Navier-
Stokes grid (about 0.003 body lengths). Various profiles from this calculation are shown in figures 5 and 6
at x/I., = 0.48 and z/l = 0.64. Also shown in figure 7 are boundary-layer-computed wall-turning angles,
Navier-Stokes-computed wall-turning angles, and experimental data (ref. 5). Although discrepancies are
evident, the overall agreement is very good on the windward portion of the body and is more than adequate
to verify the boundary-layer equations and algorithm.

CONCLUDING REMARKS

A formulation has been given for the boundary-layer equations using general body-fitted curvilinear
coordinates and retaining the original Cartesian dependent variables so that coordinate source terms are

avoided. The formulation does not require that any of the coordinates be orthogonal and gridding and
software developed for many Navier-Stokes schemes can be readily used.

The curvilinear boundary-layer equations given previously have obvious similarity to the thin layer
Navier-Stokes equations. However, in this boundary layer formulation, while three momentum equations
are solved for three Cartesian velocity components, only two linear combinations of velocity variables are
actually taken from momentum. A third linear combination of the momentum equations is used to provide
the simplified r/-momentum equation with a prescribed edge pressure. Pressure throughout the boundary
layer thus is specified and uncoupled (or weakly coupled if eq. (10) is used over eq. (11)) from the
other dependent variables within the boundary layer. This then allows the use of boundary-layer solution
algorithms.
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APPENDIX 1

METRICS

The metric relations needed for the Panaras curvilinear boundary layer equations are given as:

Kal = 0.5011 agl-----L1+ g13 ag13
a_ a_

Ka2 = g 11 0qol'--'_l+ O 13 0033

Ka3 = 0.5013 0q033
a_

+ g 11 0qgi--"_3-- 0.5g 11 Oq033

Ka4 = 022013

g

Ka5 -- g22g33

g

Ka6 = 0.5g 11 agl_____l+ 0.5013 Oqo13
On On

NaT = 0.5011 Oqol-.-._l+ 0.5013 0033

077 0rl

Ka8 ---- O 22 Ka6

I_'a9 = O 22 Ka7

Kbl = 0.5g 13 (9011 33 0013 033 0qgllo-T+o 5

Kb2 = g 13 0011 g33 Oqg33
-_+ a_

Kb4 = g22g13

g

Kb5- g11022
g
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and

13 8gll 33 _g13

K =o.5o w+o.5o W

Kb7 = 0.5g 13 Og_3 + 33 0033o-V 0.5oW

Kb8 = 022 Kb6

K_) = g22 K67

gel = 011
2 022

Ke3 = 033
2922

gll = x_xf + y_y_ + zfzf

922 = x,_x,7 + Y,_Y,1 + z,lz,1

933 = x_x_ + y_y_ + z_z_

gi2 = x_x,_ + y_y,_ + zfz,_

g_3 = x¢x¢ + y_y¢ + z_z¢

g23 = x,_x¢ + Y,lY¢ + znz,:

011 = (022033 - 023023)/0

0 22 = (011033 - 013013)/0

0 33 = (022011 - 012012)/g

g12 = (g23931 - g21933) /g

g13 = (g21932 -g22g13)/g

g23 = (g21g13 - gllg23)/g

0= (V7) -1

The metrics used throughout the paper are defined as
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with

_y = J( xcz, 7 - x,iz¢)

G = J(x,_y¢ - x¢y,_)

n== J(ycz¢ - y_z¢)

% = J(x_z¢ - x¢z_)

rl_ = J( xcy_ - z_y¢)

¢_ = J(y_z, 7- y,Tz_)

¢v = J( x,lz_ - x_z,l)

_z = J ( x_y,1 - x,ly_)

J = (X_yvlZ_ 4- X_Y_Zvl + Xvly_Z_ -- X_Yd_Zvl -- xvlY_Z_ -- x_yrlz_)-1

13



APPENDIX 2

THIN-LAYER VISCOUS TERMS

Let the Cartesian form of the compressible viscous terms undergo independent variable transforma-
tion, ( x, y, z) to (_, _7,if) in chain rule conservative form. If they are subject to a thin layer approximation
with _ taken as the direction away from the body, they simplify to

_]:_Xl'ttOfl'_ =

¢x0¢[_(_u¢ + Gu¢) + ),(Gu¢ + C_v¢+ _,w¢)]

_]_f/llrtol'rt "--

l_z'fnor¢l _-

G0¢[_CGu¢ + Gw¢)]

+G0¢[/_(Gw¢ + Gw¢) + xC¢=u¢+¢vv¢ + Gw¢)]

where ),
surface.

Reflev _--

_s0¢[mPr-1 (_/- 1)-lG(a2)¢ + uk(Gu¢ + Gv¢ + Gw¢)

+u/z(Gu¢ + Gu¢) + v/_(_vu¢ + Gv¢) + w/z(Gu¢ + Gw¢)]

+_0¢[_;Pr-1(7 - 1)-l_u(a2)¢ + vk(¢_u¢ +¢vv¢ + ¢,w¢)

+u_(_u¢ + Gv¢) + v/_(¢uv¢+ _vv¢)+ w_(Gv¢ + _w¢)]

+_O¢[_pr-l(7- 1)-_,.(a2)¢ + w)_(_zu_ + _vv¢ + _w¢)

+u/z(Gu¢ + Gw¢) + v/_(Gv¢ + ¢_w¢) + w/z(Gw¢ + _w¢)]

= -(2/3)#. Simply replace _ with r_ if rl is to be used as the direction away from the body
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Figure 1.- Sketch showing curvilinear coordinates on r/= constant surface.
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y

Figure 2.- Orientation of a simple rotated stretched grid used to verify the generalized boundary-layer code
on a flat-plate Blasius flow.
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Figure 3.- Computed velocity profiles for _ and v taken at the center of a small grid compared with the
Blasius solution; no rotation and Pr = 1.
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Figure 4.- Computed velocity profiles: for u, v, and w taken at the center of a small grid compared with the
Blasius solution; grid rotated by 30 ° and Pr = 1.
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and circumferential locations of a) qb= 0 o, b) _b= 60 o.
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